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INTRODUCTION

in 1982, | was invited to give a course of 11 two-hour lectures in the
University of Nagoya on some branch of Commutative Algebra. The topic | chose was
the asymptotic theory of ideals and the lectures were duly given between December
1982 and March 1983. The notes below are an extensive revision of the notes given
to the audience at the lectures and, with certain exceptions, the chapter headings
below correspond to the titles of the individual lectures. The exceptions referred to
are the following. First, the notes of the third lecture have been considerably
expanded so as to incorporate a proof of the Mori-Nagata Theorem, based on the
beautiful theorem of Matijevic, and the original topic of the third lecture, the
Valuation Theorem, is dealt with in the fourth lecture. The second change is more
considerable. The last three lectures of the course dealt with Teissier's theory of
mixed multiplicities as given in Teissier[1973] and was based on the use of
complete and joint reductions of a set of ideals. In the last lecture | applied these
ideas to prove what | call the general degree formula. An account of the theory of
complete and joint reductions has since appeared in Rees[1984], while, since the
lectures were given, | have succeeded in proving a still more general degree formula
using a quite different method. This method is the method of general elements of
ideals and the last three chapters of these notes now deal with the theory of
general elements finishing with a proof of the new version of the degree formuia.
These three chapters are therefore separate from the first nine and can almost be
read independently. An earlier version of the material contained in these chapters
appeared in Rees[1986].

We now consider the contents of the notes in more detail. The asymptotic
theory of ideals originated with the paper Samuell1952] which contained, in
different language, most of the basic ideas lying behind what follows. We commence
by considering some of these ideas, using the language of filtrations. By a filtration
f on a commutative ring A we understand a function defined on A which takes real
values, or the value oo, satisfying the conditions which follow.

Y1) 20, f(O) =o0; 1) f(x-y) 2MIin(F(x),T{y)); 1i1) fxy) 2 f(x) + f{y).

If f,g are filtrations, we consider them as equivalent if there is a finite constant K

such that [f(x)-g(x)l < K for all x. This is understood to mean that g(x) = o« if and



only if f(x) = e, This implies that every filtration is equivalent to a filtration
whose values are integers or e, and we often restrict attention to such filtrations.
One of Samuel's ideas was to introduce a filtration f(x) defined as the limit as n
tends to e of f(x™)/n. That this limit exists and is a filtration is proved in chapter
2. Samuel’s main interest was in the case where A is noetherian and f is a filtration

fjassociated with an ideal J and defined by f (x) > n if and only if x belongs to Jn

Samuel conjectured that f (x), if finite, was rational This was proved independently
by M. Nagatal1956] and myself[1956b]. It is with the second of these proofs that we
are now concerned. A stronger result was proved, referred to in these notes as the

Valuation Theorem. This states that f ,(x) can be expressed in the form

Min vl«(x)/vl«(d), where v; ranges over a finite set of valuations vy, which take non-
negative values on A, positive values on J, and the value « on a minimal prime ideal
p; of A depending on Vi The notation v]-(J) denotes the minimal value of v]-(x) on J.

The proof of the theorem depended on the introduction of an ancillary graded

ring which we now describe and which in these notes is denoted by G(f j). This is
the sub-ring of Alt, £~ 1 consisting of all finite sums Ecrtr, summed, say, from -p to
q, satisfying the condition that fj(c.) 2 r for each r. Now write u for t™1 and G for

G(fJ). Then fJ is the restriction to A of the filtration qu on G and the proof of the

Valuation Theorem is reduced to the special case where J is a principal ideal
generated by a non-zero divisor. Since G is noetherian, this point being crucial, this
special case is a fairly easy deduction from the Mori-Nagata Theorem. In fact the
proof of [1956b], obtained in 1955, did not use the Mori-Nagata Theorem, since
Nagata's proof of the general case in Nagatal 1955] was not then available to me.

The definition of G(f ;) can obviously be adapted to define a graded ring G(f) for

any filtration f and the proof indicated above can also be adapted to prove a
Valuation Theorem for f, providing that G(f) is noetherian. This leads to the
introduction of a class of filtrations, noether filtrations, defined as those for which
G(f) is noetherian, with the additional restriction that they take integer values
together with =, Again a result of Samuel plays a crucial part, his characterisation

of graded noetherian rings G as those for which the sub-ring G, of elements of



degree zero is noetherian and which, in addition, are finitely generated over this
sub-ring.

I first met this in Samuel[1953], and it is referred to below as Samuel's
Theorem. This theorem enables us to describe noether filtrations in some detail,
and this is done in chapter 2. We will merely give one consequence, which appears in

chapter 6 as Lemma 6.11, to the effect that, if f is a noether filtration which takes

only non-negative values, then it is equivalent to a filtration w.f ; for some ideal J,

and some positive integer w. This indicates the key role played by the filtrations f |,

Now, at last, we consider the individual chapters, restricting ourselves to the
first five chapters for the present. Chapter 1 collects together some general resuits
on graded noetherian rings, based for the most part on Samuel's Theorem, but
inciuding an account of the theory of Hilbert Functions using the Koszul Complex.
Chapter 2 is concerned with elementary results on filtrations, particutarly noether

filtrations, and we will pick out some of these. First, there is a uniqueness theorem

for the representation of f(x) in the form Min vi(x)/ei, where v; ranges over a finite
set of valuations and the numbers e; are real. Note that the existence of the

representation does not appear until chapter 4. Next, in this chapter we associate
with a noether filtration f another filtration f* which is integer-valued and closely
associated with f(x). This is the integral closure of f. It is defined by T*(x) 2 n if x
satisfies an equation

r r-1 -
X'+ X ot c=0

with f(cy) 2 ni for each i. f* isrelated to f, f by inequalities

F(x) < XD < FX) S TX(x) + 1.
in fact f*(x) is the integral part of f(x), but this is not proved until chapter 4.
Finally, if f and g are two noether filtrations taking only non-negative values, then
they are equivalent if and only if T%*(x) = g*(x) for all x.

Now we come to chapters 3 to 5. The first of these contains a proof of the
theorem of Matijevic (Matijevic[1976]) and uses it to prove the Mori-Nagata Theorem
(Mori[1952] for local domains and Nagatal1955] for general noetherian domains).
The proof given here draws heavily on the papers of Querre[1979] and Kiyek{1981].
Chapter 4 is devoted to a proof of the Valuation Theorem for any noether filtration

f. 1t takes the form



Fx) =Minv;(x)/vy(f)
the minimum being taken over a finite set of valuations v;. This theorem is proved

for noether fiitrations which may take negative values on A. In this case the
definition of vi(f) is somewhat complicated and we restrict attention here to the
case where f(x) takes only non-negative values. First we note that the valuations Vi
take values which are non-negative integers or e on A and positive values on the

radical of f, this being defined as the set of elements for which f(x™) > O for some n.
If vy is proper, that is, takes values other than 0,e, then vi(f) is the minimum of
vi(x)/f(x) taken over those x for which f(x) is neither O or o. If v; is degenerate
v;(f) can be taken to be 1.

Now we come to chapter 5. In this and the later chapters, f is restricted to take
non-negative values. Chapter 5 has as its objective the Strong Valuation Theorem.
The aim of this theorem is the determination of conditions under which f*(x) is a
noether filtration. it states that this is true for all noether fiitrations on A if and

only if, for every maximal ideal m of A, the jocal ring A, is analytically un-

ramified, that is, the completion (A )" of A has no nilpotent elements. This

requires a great deal of the theory of completions, and hence chapter S contains a
brief account of the relevant material, given without proofs.
In chapters 6 and 7, the problem considered is that of determining which proper

valuations v are associated with some noether filtration f on A via the Valuation

Theorem. Since f can be taken to be of the form fy by Lemma 6.11, these are termed

ideal valuations. The two chapters give different characterisations of ideal
valuations. In chapter 6, the general case is reduced to the case where A is a local
domain (Q,m,k,d) and v has radical m. Here m is the maximal ideal of Q, k = Q/m, and
d is the Krull dimension of Q. This implies that v has a unique extension v~ to the
completion Q" of Q. Then for v to be an ideal valuation it is necessary and sufficient

that this extension v" takes the value e on a minimal prime ideal p of Q°, and that
the residue field KV of v has transcendence degree dim(Q"/p)- 1 over k. Further,

given a noether filtration f on Q, the set of valuations associated with f contains

one, v say, such that its extension v~ takes the value e on a given minimal prime



ideal p of Q. In chapter 7 it is sufficient to restrict A to be a domain, and for v to
be an ideal valuation on A, it is necessary and sufficient for there to exist a finitely
generated extension B of A contained in the field of fractions of A with the
following two properties: first, that v(x) 2 O on B and secondly, that the centre p of
v on B has height 1. Here, by the centre of v on B, we mean the prime ideal p on
which v takes positive values. Using these two characterisations of ideal
valuations, we can describe the ideal valuations of a finitely generated extension B
of A in terms of those of A. Further, it is possible to use ideal valuations to give
new proofs of a number of results of the type of the altitude inequality or
concerning chains of prime ideals. This is done in chapter 7.

The next two chapters are concerned with multiplicities. In chapter 8, if f is a
noether filtration on a local ring (Q,m k,d) with radical m, we associate with f an
additive function e(f,M) on the category FG(Q) of finitely generated Q-modules. This
is very closely related to the ordinary muttiplicity function associated with an
ideal. The theory is developed in the short chapter 8 by means of Koszul Complexes.
More important from the point of view of these notes is the degree function d(f,M,x)
introduced in chapter 9. This depends not only on f, but on an eiement x of Q
satisfying the condition that dim(Q/xQ) = d- 1, and, for fixed f, x is again an
additive function of M. It is defined by

d(r,M%) = e(f, M/XM) = e(fy, (01 X))

where f, 1s the filtration on Q/xQ defined by taking f,(y} = Max (f(y)), where y’

ranges over the inverse images of y under the map Q — Q/xQ, and M/xM, (0: %) are
considered as (Q/xQ)-modules. The main object of these two chapters is to prove a
degree formula
d(f,M,x) = Z8(VIL, (MA(T,vIv(x),

where v ranges over the valuations associated with f such that the residue field of
v has transcendence degree d-1, 8(v) is the length of the primary component of zero
in Q" corresponding to the prime ideal p of Q" on which v’ takes the vaiue infinity,
and L,(M) is the length of the module Mp(v) over the artinian ring Op(v)' where p(v)
is the minimal prime ideal of Q on which v takes the value-co. The numbers d(f,v) are

positive rational numbers. Chapter 9 concludes with a proof, using the degree

formula, of the theorem that, if Q is quasi-unmixed (that is, dim(Q*/p) = d for all
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minimal primes p of Q°), and f,g are two noether filtrations with radical m such
that g(x) » f(x) for all x, then f,g are equivalent if and only if e(f,Q) = e(g,Q).

Now we turn to the last three chapters. We have already remarked that these
chapters are separate from the first 9, and that the key idea underlying them is that
of general elements of ideals. If (Q,m k,d) is a local ring and J is an ideal of Q with a

basis ay,..,a,,, then a natural way of defining a general element x of J is to take
X = ZXja;, where X;,. X, are indeterminates over Q. Further, if we localise

QlXy,... X1 at mIXy,..,X,), we keep within the theory of local rings. However, in
situations where we have to consider several general elements of either the same
or different ideals, this means that we have to adjoin more indeterminates. Eakin
and Sathaye[1976] overcame this difficulty by adjoining a countable set of
indeterminates X,X5,... and localising at m(X,X,,..], using the resulting ring with
considerable success. it is this idea we follow in these three chapters, the resulting

ring being termed the general extension of Q and denoted by Qg. Qg can also be

considered as the union of the rings Qy obtained by localising QlXy,...Xy] at

m[X,,. Xyl [n these notes considerable use is made of the fact that Og is

noetherian. This is a particular case of a general result of Grothendieck which

appears as Proposition 1 in the appendix to chapter 9 of [BAC], but an ad hoc proof of

the fact that Og is noetherian is given in chapter 10. Another aspect of Qg is that it

is a regular extension of Q, which implies that any reasonable condition imposed on

Q is almost certainly also satisfied by Og, This is verified in a number of important
cases in chapter 10. However, the main object of chapter 10 is twofold. First we

study the relationship between a prime ideal P of Q, and the prime ideal p = PnQ of

g
Q. The basic result is Theorem 10.23 of chapter 10. Secondly we consider

m-valuations. An m-valuation v on Q is a valuation non-negative on Q, positive on m,
and taking the value - on some prime ideal p of Q, not necessarily minimal. we
require the further restriction on v that its residue field K,, be finitely generated
over k. Finally we say that v is good if

trans.degyK,, = dim{Q/p) - 1.
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The results we require on m-valuations on Q, Qg are set out in the third part of

chapter 10.

In chapter 11 we now come to general elements. We will only consider here the
simplest case, that of a general etement of an ideal J. The definition already given
is taken here as the definition of a standard general element x of J. A general

element x of J is then any element of the form T(x), where T is an automorphism of

Og over Q. This definition turns out to be independent of the choice of the particular
set of generators ay,..,ay, of J we start with. It is not too difficult to extend the

same idea to consider independent sets of general elements x,,..,Xg Of a set of

ideals JI,M,JS and to remark upon results such as the ideal Qn(x1Qg + .+ xSQg)
depending only on Jy,....Jg.

Now we turn to the final chapter where the object is to generalise the degree
formula of chapter 9, aithough filtrations piay no part in the generalisation. We

start with a definition. A set of ideals Jy,...,J. of Q is said to be independent if a set
of independent general elements xy,..,X, of these ideals is a sub-set of a set of

parameters of Q.. If r =d, then we can define a mixed multiplicity e(Ql J IM) as the

g
multiplicity e(OgI X150Xg IM@QOQ), as introduced by D.J. Wright and described in

detail in Northcott[LRMMI. This depends only on the set of ideals J = (Jy,..,Jg), and
not on the set of independent general elements x,..,.xq chosen. If the ideals of J are

all m-primary, this is Teissier's mixed multiplicity, but it is defined for some other

sets of ideals J. The function e(Ql J IM) is symmetric in the ideals Ji,dgs takes

non-negative integer values and has the nice property that, if we write J' for the
set Ji,dg-17,
e(Ql J',JgKq IM) = e(Ql J',Jq M) + eQl I Kq M),
The general degree formula now arises as follows. We consider a set of d-1
independent ideals J° as above. If J is any m-primary ideal, the set (J',J) is also
independent, and hence for any M, e(Ql J',J [M) can be considered as a function on the

set of m-primary ideals of Q@ with non-negative integer values. In its simplest form,

the degree formula is a formula



e(Ql J',J M) = za(J";M;vivid)
the sum being over all good m-valuations on Q. The existence of such a formula
implies the uniqueness of the coefficients a(J';M;v) as a result of a theorem proved
in chapter 10. We refer the reader to chapter 12 for more specific information
concerning the coefficients a(J';M;v). We simply note here that the values of
a(J';M;v) are non-negative integers, and, as a function of M, they are additive

functions on FG(Q).



